Characterization of the methanotrophic bacterial community present in a trichloroethylene-contaminated subsurface groundwater site.
نویسندگان
چکیده
Groundwater, contaminated with trichloroethylene (TCE) and tetrachloroethylene (PCE), was collected from 13 monitoring wells at Area M on the U.S. Department of Energy Savannah River Site near Aiken, S.C. Filtered groundwater samples were enriched with methane, leading to the isolation of 25 methanotrophic isolates. The phospholipid fatty acid profiles of all the isolates were dominated by 18:1 omega 8c (60 to 80%), a signature lipid for group II methanotrophs. Subsequent phenotypic testing showed that most of the strains were members of the genus Methylosinus and one isolate was a member of the genus Methylocystis. Most of the methanotroph isolates exhibited soluble methane monooxygenase (sMMO) activity. This was presumptively indicated by the naphthalene oxidation assay and confirmed by hybridization with a gene probe encoding the mmoB gene and by cell extract assays. TCE was degraded at various rates by most of the sMMO-producing isolates, whereas PCE was not degraded. Savannah River Area M and other groundwaters, pristine and polluted, were found to support sMMO activity when supplemented with nutrients and then inoculated with Methylosinus trichosporium OB3b. The maximal sMMO-specific activity obtained in the various groundwaters ranged from 41 to 67% compared with maximal rates obtained in copper-free nitrate mineral salts media. This study partially supports the hypothesis that stimulation of indigenous methanotrophic communities can be efficacious for removal of chlorinated aliphatic hydrocarbons from subsurface sites and that the removal can be mediated by sMMO.
منابع مشابه
Impacts of Co-Solvent Flushing on Microbial Populations Capable of Degrading Trichloroethylene
With increased application of co-solvent flushing technologies for removal of nonaqueous phase liquids from groundwater aquifers, concern over the effects of the solvent on native microorganisms and their ability to degrade residual contaminant has also arisen. This study assessed the impact of ethanol flushing on the numbers and activity potentials of trichloroethylene (TCE)-degrading microbia...
متن کاملSubsurface characterization of groundwater contaminated by landfill leachate using microbial community profile data and a nonparametric decisionmaking process
[1] Microbial biodiversity in groundwater and soil presents a unique opportunity for improving characterization and monitoring at sites with multiple contaminants, yet few computational methods use or incorporate these data because of their high dimensionality and variability. We present a systematic, nonparametric decision-making methodology to help characterize a water quality gradient in lea...
متن کاملMicrobial Community Responses to Organophosphate Substrate Additions in Contaminated Subsurface Sediments
BACKGROUND Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to ...
متن کاملBacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation
The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. This study investigates the bacterial community structure of g...
متن کاملChemical Oxidation Techniques for in Situ Remediation of Hydrocarbon Impacted Soils
Increasing concerns over health and ecological impacts of contaminated sites are leading to the development of cost effective remediation techniques for reducing the mass, mobility and/or toxicity of contaminated soils and groundwater. Amongst these, in situ chemical oxidation techniques are evolving as an effective way of remediating contaminated soil. In situ chemical oxidation involves the i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 59 8 شماره
صفحات -
تاریخ انتشار 1993